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Quantitative Similarity-Based Association Tests Using Population Samples
Shuanglin Zhang and Hongyu Zhao
Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven

Although genetic association studies using unrelated individuals may be subject to bias caused by population
stratification, alternative methods that are robust to population stratification, such as family-based association
designs, may be less powerful. Furthermore, it is often more feasible and less expensive to collect unrelated indi-
viduals. Recently, several statistical methods have been proposed for case-control association tests in a structured
population; these methods may be robust to population stratification. In the present study, we propose a quantitative
similarity-based association test (QSAT) to identify association between a candidate marker and a quantitative trait
of interest, through use of unrelated individuals. For the QSAT, we first determine whether two individuals are
from the same subpopulation or from different subpopulations, using genotype data at a set of independent markers.
We then perform an association test between the candidate marker and the quantitative trait, through incorporation
of such information. Simulation results based on either coalescent models or empirical population genetics data
show that the QSAT has a correct type I error rate in the presence of population stratification and that the power
of the QSAT is higher than that of family-based association designs.

Introduction

Population-based association studies using unrelated in-
dividuals have often been criticized for inducing spurious
associations due to population stratification. As a result,
family-based association designs (Spielman et al. 1993)
have received great attention recently, because of their
robustness to population stratification and their poten-
tially higher power relative to linkage studies (Risch and
Merikangas 1996). Population samples consisting of un-
related individuals, however, may be easier and less ex-
pensive to collect, and such designs are, in general, more
powerful than family-based association designs, both for
qualitative traits (Morton and Collins 1998; Risch and
Teng 1998; Teng and Risch 1999; Risch 2000) and for
quantitative traits (van den Oord 1999). Recently, sev-
eral methods have been proposed that utilize genomic
markers to control for population stratification in the
analysis of unrelated individuals (Devlin and Roeder
1999; Bacanu et al. 2000; Pritchard et al. 2000b; Reich
and Goldstein 2001; Satten et al. 2001; Zhang et al., in
press). These novel approaches are promising because
they may have greater power than family-based asso-
ciation designs and may be robust to potential popu-
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lation stratification. One limitation of these methods is
that they are only applicable to qualitative traits, al-
though quantitative traits may contain more informa-
tion.

In the present study, we develop a quantitative sim-
ilarity-based association test (QSAT) to examine asso-
ciations between candidate markers and quantitative
traits of interest, in a set of unrelated individuals. The
QSAT controls population stratification through a set
of genomic markers. To perform the QSAT, we first use
the genotypes of the sampled individuals at a series of
independent markers to calculate a similarity score, Sij,
between individuals i and j. We then model the distri-
bution of these similarities, through use of a normal
mixture model with one or two components (a within-
subpopulation component and a between-subpopula-
tion component). We then use the Bayesian information
criterion to estimate the number of components and
decompose each individual’s genotypic score into
within-subpopulation and between-subpopulation com-
ponents. The QSAT is then calculated on the basis of a
regression model that treats the trait value as the de-
pendent variable and the within- and between-popu-
lation genotypic scores as predictors. We evaluate the
performance of the QSAT through simulations using
coalescent models and empirical population genetics
data. The simulation results suggest that our procedure
has a correct type I error rate in the presence of pop-
ulation stratification and is more powerful than statis-
tical association tests for family-based association de-
signs (Fulker et al. 1999; Monks and Kaplan 2000; Sun
et al. 2000).
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Methods

In this section, we first discuss the method for a ho-
mogeneous population and then discuss the QSAT for
a heterogeneous population. We assume that the can-
didate marker is biallelic, with alleles M and m. There
are three genotypes at this marker: MM, Mm, and mm.
For an individual, we use A to denote the additive geno-
typic score at the candidate marker, with the value of A
being 1, 0, and �1 for genotypes MM, Mm, and mm,
respectively. We use D to denote the dominance geno-
typic score at the candidate marker, with the value of D
being 0, 1, and 0 for genotypes MM, Mm, and mm,
respectively. Let yi denote the quantitative trait value of
the ith individual. For a homogeneous population, ge-
netic association between the candidate marker and the
quantitative trait can be studied through the following
regression model:

y p m � aA � bD � e , (1)i i i i

where the values of ei are assumed to be independent of
each other and independent of the values of Ai and Di,
with mean 0 and variance j2. In this regression model,
a and b are the additive and dominance genetic values.
In the case of a homogeneous population, the least-
squares (LS) estimators of a and b, denoted by andâ

, respectively, are unbiased estimators of a and b. Underb̂

the null hypothesis of no association between the can-
didate marker and the trait of interest, both a and b are
0, and standard statistical tests can be performed to iden-
tify deviation from the null hypothesis.

The regression method shown in equation (1) may be
invalid in the presence of population stratification. To
illustrate this point, let us assume that there are k sub-
populations, with ni individuals sampled from the ith
subpopulation, and that each subpopulation is homo-
geneous. Let mi denote the phenotype mean in the ith
subpopulation, let pi and qi denote the allele frequencies
of the M and m alleles in the ith population, let yij denote
the trait value of the jth individual in the ith subpop-
ulation, and let Aij and Dij denote the additive and dom-
inance genotypic scores of the jth individual in the ith
subpopulation. We assume that the conditional expec-
tation of the trait value of the jth individual in the ith
subpopulation is

E(y FA , D ) p m � a A � b D . (2)ij ij ij i i ij i ij

In the presence of subpopulations, the null hypothesis
to be tested is that there is no association between the
candidate marker and the trait value in any of the sub-
populations—that is, anda p … p a p 0 b p1 k 1

.… p b p 0k

If we apply the following regression model to test the

null hypothesis of no association between the candidate
marker and the trait,

y p m � aA � bD � e , (3)ij ij ij ij

the conditional expectations of regression coefficients
and , conditional on the observed values of Aij andˆâ b

Dij, are

k k

ˆE(aFA , D , for all i, j) p m � a a � b d� �ij ij a i (a)i i (a)i
ip1 ip1

and

k k

ˆE(bFA , D , for all i, j) p m � a a � b d ,� �ij ij b i (b)i i (b)i
ip1 ip1

where the notation is given in detail in Appendix A,
with , andk k k� a p 1 � d p 0, � a p 0,ip1 (a)i ip1 (a)i ip1 (b)i

. Under the null hypothesis of no associ-k� d p 1ip1 (b)i

ation between the candidate marker and the trait of
interest, and ,a p … p a p 0 b p … p b p 01 k 1 k

, and . Therefore,ˆˆE(aFA , D ) p m E(bFA , D ) p mij ij a ij ij b

and , under the null hypoth-ˆˆE(a) p E(m ) E(b) p E(m )a b

esis; however, E(ma) and E(mb) may not be 0, in general,
when allele frequencies and mean trait values differ
among the subpopulations. Therefore, in the presence
of population stratification, even under the null hy-
pothesis of no association between the candidate marker
and the trait of interest, statistical tests based on the
model in equation (3) may lead to false positives due
to population stratification.

In the context of analyzing sib-pair data, Fulker et
al. (1999) proposed to decompose the genotypic score
into two orthogonal components: the between-family
(b) component and the within-family (w) component.
Under this decomposition, only the between-family
component is sensitive to population structure, and the
within-family component is significant only when there
is an association between the candidate marker and the
trait. This approach has been extended to nuclear fam-
ilies (Abecasis et al. 2000) and general sibship data
(Sham et al. 2000). To generalize this idea to population
data in cases in which the exact population structure is
known, we can decompose the genotypic scores into
orthogonal between-population and within-population
components. Specifically, we define and

— niA p � A /ni jp1 ij i

to be between-population and within-
—

A p A � Awij ij i

population additive genotypic scores, respectively, and
define and to be be-

— —niD p � D /n D p D � Di jp1 ij i wij ij i

tween-population and within-population dominance
genotypic scores, respectively. Having defined the no-
tation, we consider the following regression model:
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— —
y p m � a A � a A � b D � b D � e . (4)ij b i w wij b i w wij ij

Denote the LS estimators of ab, aw, bb, and bw as ,âb

, , and , respectively. The conditional expecta-ˆ ˆâ b bw b w

tions of these estimators are derived in Appendix B, and
it can be shown that all the spurious association between
genotypic scores and trait values due to population
stratification is accounted for by and . On the otherˆâ bb b

hand, and are unbiased estimates of the additiveˆâ bw w

and dominance genetic values a* and b*, provided that
all subpopulations have the same additive and domi-
nance genetic values—that is, and∗a p … p a p a1 k

. When the additive and dominance∗b p … p b p b1 k

values are different among the subpopulations, the ex-
pectations of and areˆâ bw w

k k

ˆE(a ) p a a � b d� �w i (wa)i i (wa)i
ip1 ip1

and

k k

ˆE(b ) p a a � b d ,� �w i (wb)i i (wb)i
ip1 ip1

where andk k k� a p � d p 1 � a pip1 (wa)i ip1 (wb)i ip1 (wb)i

, and the details are given in Appendix B.k� d p 0ip1 (wa)i

So, under the null hypothesis of no association,
and . Intuitively, when all of theˆˆE(a ) p 0 E(b ) p 0w w

subpopulations have the same additive and dominance
genetic values (the mean trait values may be different
among subpopulations), then anda p … p a p a1 k w

. In this case, testing the hypothesisb p … p b p b1 k w

and is equiv-H :a p … p a p 0 b p … p b p 00 1 k 1 k

alent to testing the hypothesis under1H :a p b p 00 w w

the model in equation (4). When the additive and dom-
inance genetic values vary among subpopulations, aw

and bw are linear combinations of ai and bi. In this case,
rejection of guarantees rejection of H0. Therefore,1H0

the test for the null hypothesis under the model in1H0

equation (4) is still a valid test for hypothesis H0 in a
structured population.

One difficulty in the application of the above ap-
proach is that we do not know the underlying popu-
lation structure. However, potential population struc-
tures can be estimated through a series of genetic
markers (e.g., see the report by Pritchard et al. [2000a]).
In the present study, instead of estimating the underlying
population structure, we examine each pair of individ-
uals and infer whether the two individuals are from the
same subpopulation or from different subpopulations.
Suppose that there are L independent biallelic markers

, where , and each marker has twoA l p 1, … , L Al l

alleles, Al and al. Further suppose that there are n in-
dividuals in our sample and let zil denote the genotype

of the ith individual at the lth marker, where i p
and . The value of each zil can be1, … , n l p 1, … , L

0, 1, or 2, corresponding to the ith individual having
0, 1, or 2 copies of allele Al, respectively. A natural
measure of the difference in genotypes between the ith
and the jth individuals is . In the pre-Ld p � Fz � z Fij lp1 il jl

sent study, we define the similarity, Sij, between the ith
and the jth individuals as , where isS p d � d dij max ij max

the maximum value of the dij across all pairs of
individuals.

For individuals within the same subpopulation, we
expect the value of Sij to be smaller than that between
individuals from different subpopulations. We propose
to decompose these similarity estimates into two com-
ponents: a within-subpopulation component and a be-
tween-subpopulation component. To identify possible
components among the Sij, we assume the following
normal mixture model for the similarity estimates Sij:

K

2S ∼ p N(m ,j ) ,�ij k k k
kp1

where K represents the number of components in the
mixture model, pk denotes the proportion of the kth
component, and denotes the Gaussian density2N(m ,j )k k

function with mean mk and variance . The maximum-2jk

likelihood estimates of the parameters pk, mk, and jk, for
a given K, can be obtained by means of the clustering
expectation-maximization (CEM) method (Celeux and
Govaert 1995). We use the Bayesian information cri-
terion (BIC) to choose K. The BIC is defined as

, where N is the totalBIC(K) p �2L(K) � M(K) log N
number of observations,

K

2ˆ ˆˆL(K) p log [ p N(m , j )]� � k k k
i,j kp1

is the maximized log likelihood for a given K, and
is the number of free parameters in the mixtureM(K)

model. On the basis of our experience with simulated
data sets based on both coalescent models and on em-
pirical population genetics data, a choice for K between
1 and 2 is adequate to account for population structure
in the data. The case of corresponds to a singleK p 1
population—that is, there is no population heteroge-
neity, whereas corresponds to two components:K p 2
a within-population component and a between-popu-
lation component. Note that implies only thatK p 2
there is population structure in the data, but it does not
imply that there are only two subpopulations. When

, let , , and denote the maximum-likelihoodˆ ˆˆK p 2 p m jk k k

estimates of the parameters pk, mk, and jk, respectively;
then
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Table 1

Type I Error Rates of the Four Test Statistics (T, QSAT, TDTMK, and TDTVC) under Coalescent Models for
Different Trait-Value Distributions

TRAIT DISTRIBUTION AND

NO. OF GENERATIONS

SINCE POPULATION DIVISION

TYPE I ERROR RATE

(%)

P p .05 P p .01

T QSAT TDTMK TDTVC T QSAT TDTMK TDTVC

Normal:
500 38.5 4.3 4.8 4.9 25.1 .8 1.2 1.2
1,500 65.4 4.9 4.7 5.4 54.6 1.0 .95 1.2
4,500 89.3 5.4 4.6 4.3 82.6 1.1 1.0 .95

Log-normal:
500 39.6 4.3 4.4 4.5 27.0 .85 .88 1.1
1,500 64.1 4.6 5.0 5.6 53.5 .87 1.1 .9
4,500 87.4 4.5 5.6 5.3 81.5 .85 1.2 1.0

2ˆ ˆˆp N(m , j )k k kt pijk 2 2ˆ ˆˆ ˆˆ ˆp N(m , j ) � p N(m , j )1 1 1 2 2 2

is the conditional probability that Sij arises from the kth
mixture component. Assuming that if ,ˆ ˆm 1 m t 1 .51 2 ij1

we define the similarity indicator Wij between the ith
and the jth individuals to be 1 and assume that these
two individuals belong to the same subpopulation in
our subsequent analysis. If , we define the simi-t ! .5ij1

larity indicator Wij between the ith and the jth individ-
uals to be 0 and assume that these two individuals be-
long to different subpopulations.

Let yi, Ai, and Di denote the trait value, additive geno-
typic score, and dominance genotypic score, respec-
tively, of the ith individual. Let , with ni

nn p � Wi jp1 ij

defined as the number of individuals estimated to be in
the same subpopulation as the ith individual. Using Ai

and Wij, we can decompose the additive genotypic score,
Ai, into two components: a between-subpopulation
component, , and a within- subpop-

— nA p (� AW )/ni jp1 j ij i

ulation component, . Similarly, we can de-
—

A p A � Awi i i

compose the dominance genotypic score, Di, into two
components: a between-subpopulation component

and a within-subpopulation com-
— nD p (� DW )/ni jp1 j ij i

ponent . On the basis of these definitions,
—

D p D � Dwi i i

we fit the following regression model:

— —
y p m � a A � a A � b D � b D � e . (5)i b i w wi b i w wi i

When there are k subpopulations, and under the as-
sumption that we can make correct inference about
whether two individuals are from the same or different
subpopulations, the between-subpopulation compo-
nents and the within-subpopulation components are or-
thogonal. The LS estimates of aw and bw are

V C � C CD A y A D D yw w w w wâ pw 2V V � CA D A Dw w w w

and

V C � C CA D y A D A yw w w w wb̂ p ,w 2V V � CA D A Dw w w w

where

n

2V p A ,�A wiw
ip1

n

2V p D ,�D wiw
ip1

n

—C p A (y � y) ,�A y wi iw
ip1

n

—C p D (y � y) ,�D y wi iw
ip1

and

n

C p D A .�A D wi wiw w
ip1

To test the null hypothesis that there is no association
between the candidate marker and the trait of interest
in all subpopulations, we may test the null hypothesis

, through use of the regression modelH :a p b p 00 w w

in equation (5). If we assume that are independentei

normal variables with the same variance, the usual test
statistic is the F test statistic, , where2ˆF p T/j T p

, ,T T ˆˆˆ ˆ ˆh Vh/2 h p (a , b )w w

V CA A Dw w wV p ,( )C VA D Dw w w

and is an estimate of the variance of the ei. However,2ĵ

the ei may not follow the normal distribution and may
not have the same variance, especially for different ge-
notypes and in different subpopulations. Therefore, sta-
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Table 2

Type I Error Rates of the Four Tests (T, QSAT, TDTMK, and TDTVC) in Simulations based on Empirical
Population Genetics Data, under the Random Sampling Scheme

NO. OF INDEPENDENT MARKERS,
STATUS OF HIGH-RISK ALLELE,
AND TRAIT DISTRIBUTION

TYPE I ERROR RATE

(%)

P p .05 P p .01

T QSAT TDTMK TDTVC T QSAT TDTMK TDTVC

520:
Fixed:

Normal 13.5 4.8 4.6 4.6 5.1 1.1 1.0 .9
Log-normal 14.6 4.4 4.5 4.4 6.0 .8 1.0 1.0

Random:
Normal 14.1 4.9 4.7 5.5 5.7 1.1 1.1 1.2
Log-normal 13.6 4.5 4.7 4.6 5.8 .8 .9 1.0

1,040:
Fixed:

Normal 13.4 5.1 5.3 5.7 5.3 1.0 1.3 1.2
Log-normal 14.5 4.9 5.1 5.2 6.2 .8 1.1 1.0

Random:
Normal 13.2 5.1 4.4 4.9 5.0 1.3 .9 1.1
Log-normal 14.5 4.5 5.9 5.0 5.3 .9 1.4 1.2

tistical inferences using the F statistic may not lead to
correct statistical significance levels.

In the present study, we propose to use T as our QSAT
and to use simulations to evaluate statistical significance
for the test statistic. The basic idea of the simulation
method is to permute the trait values of the individuals
within the same subpopulation, in order to derive an
empirical distribution for the test statistic; however, one
practical difficulty in implementing this method directly
is that we do not know exactly how many subpopu-
lations there are or which individuals belong to the same
subpopulation. As a result, we propose the following
simulation method to approximate the distribution of
the QSAT:

1. Randomly choose one individual—say, the i1th in-
dividual—in the sample. Then randomly choose
one individual from the set —say, the{i:W p 1}i i1

th individual. Denote the trait value of the th∗ ∗i i1 1

individual as ;∗yi1

2. Randomly choose one individual from all sampled
individuals except the th individual—say, the thi i1 2

individual. Then randomly choose one individual
from the set —say, the th in-∗ ∗I p {i:W p 1}/{i } ii i i 1 22 2

dividual. Denote the trait value of the th individ-∗i2

ual by . If is an empty set, define ;∗ ∗y I y p yi i i i2 2 2 2

3. Randomly choose one from all the sampled indi-
viduals except individuals —say, in-i ,i , … , i1 2 (j�1)

dividual ij—and randomly choose one individual
from the set —in-∗ ∗ ∗I p {i:W p 1}/{i , i , … , i }i i i 1 2 (j�1)j j

dividual , for example. Denote the trait value of∗ij
th individual as . If is an empty set, define∗ ∗i y Ij i ij j

.∗y p yi ij j

In the end, we generate a set of new trait values:

and for the n individuals in the sample. For∗ ∗ ∗y , y … , y1 2 n

this simulated sample, we calculate the test statistic. We
repeatedly generate m sets of simulated data sets, and
we can then estimate the level of statistical significance
from these test statistics.

Simulation Models

In this section, we discuss the simulation models used
to assess whether the QSAT is robust to population strat-
ification and to compare the power of the QSAT with
other association tests. In our simulation studies, we gen-
erate the data either through coalescent models or
through empirical population genetics data.

Coalescent Models

In this set of simulations, we use coalescent models
to generate genotypes of the sampled individuals in a
structured population. Pritchard et al. (2000b) consid-
ered coalescent models with constant population sizes.
We consider coalescent models with variable population
sizes (Griffiths and Tavaré 1994, 1997) in our simula-
tions and allow subpopulations to have different pop-
ulation sizes. We assume that there was an ancestral
population that had evolved for a long period of time
with a constant population size; this population was
then divided into two subpopulations, T generations be-
fore the present time. From the time of division, the two
subpopulations have experienced exponential growth in-
dependently, without migrations. We assume that, at the
time of division, the population sizes of the two sub-
populations were 100 and 104, respectively, and that the
population sizes at the present time are 107 and 5 #

, respectively. Therefore, the first subpopulation has710
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Table 3

Type I Error Rates of the Four Tests (T, QSAT, TDTMK, and TDTVC) in Simulations based on Empirical
Population Genetics Data, under the Selective Sampling Scheme

NO. OF INDEPENDENT MARKERS,
STATUS OF HIGH-RISK ALLELE,
AND TRAIT DISTRIBUTION

TYPE I ERROR RATE

(%)

P p .05 P p .01

T QSAT TDTMK TDTVC T QSAT TDTMK TDTVC

520:
Fixed:

Normal 22.5 4.5 4.9 5.2 12.1 .80 1.42 1.12
Log-normal 18.9 4.3 4.3 4.2 9.0 .74 .88 .68

Random:
Normal 22.3 4.5 4.8 5.5 11.7 .81 .92 1.20
Log-normal 19.6 4.5 5.4 5.4 8.40 .98 1.30 1.25

1,040:
Fixed:

Normal 22.6 4.6 4.8 5.1 11.7 .84 .91 .98
Log-normal 19.4 4.5 4.6 4.9 9.2 .84 .88 .85

Random:
Normal 22.0 4.9 5.5 5.3 11.7 .95 1.36 1.22
Log-normal 18.6 4.3 5.8 5.7 9.5 .81 1.25 1.05

experienced more rapid growth than has the second sub-
population. We consider three population divergence
times between the two subpopulations: (1) gen-T p 500
erations, (2) generations, and (3)T p 1,500 T p

generations. The first two separation times prob-4,500
ably correspond to the divergence time between non-
African populations, and the third separation time prob-
ably corresponds to the divergence time between African
and non-African populations (Goldstein et al. 1995).

We assume that a total of 500 independent biallelic
markers are used for our inference on the population
structure. The sample consists of 25 individuals from the
first subpopulation and 125 individuals from the second
subpopulation. We assume that the mutation rate is

per generation and only select markers�7m p 5 # 10
with allele frequencies of �.2 in the sample. This thresh-
old was also used by Pritchard and Rosenberg (1999)
to approximate the likely characteristics of single-nucle-
otide polymorphism (SNP) surveys (Wang et al. 1998).
We use the same procedure to simulate genotypes at the
candidate locus. On the basis of the genotype at the
candidate locus, the trait values are generated according
to the following model:

y p m � a A � b D � e , (6)ij i i ij i ij ij

where , , and eij is a nor-m p m # R a p b p m # Ri 00 i i i 0 i

mal random variable or a log-normal variable with mean
0 and variance 1. In our simulations, we set forR p 11

individuals from the first subpopulation, forR p 1/42

individuals from the second subpopulation, and m p00

. Furthermore, we set and , for the type2 m p 0 m p 20 0

I error examination and power comparison, respectively.

We also vary genetic models and trait distributions (ei-
ther normally distributed or log-normally distributed) in
our simulations. In the determination of the allele that
increases the quantitative trait values, we fix the same
allele in the two subpopulations.

Empirical Population Genetics Data

One limitation of the simulations based on coalescent
models is that these models may not represent the human
population evolutionary histories accurately. Therefore,
in our simulations, we also use empirical population
genetics data from the population genetics database AL-
FRED (Osier et al. 2001; ALFRED Web site), which
provides allele frequencies for SNPs and for microsat-
ellite markers in different populations. For our simula-
tions, we extracted 130 markers across four populations,
including Danes, San Francisco Chinese, Biaka, and
Maya. We use these four populations to represent pop-
ulations from four different continents. For microsat-
ellite markers, we pool the alleles to form biallelic mark-
ers with allele frequencies of 10%–90%.

For simulations based on empirical population ge-
netics data, we consider different numbers of markers
used to infer pairwise relationships, different trait-value
distributions, and different schemes to assign alleles con-
ferring high trait values. We generate 20 replications,
with each replication consisting of a total of n individ-
uals. Among these n individuals, there are individuals.5n
sampled from the Danes, individuals from the Chi-.2n
nese, individuals from the Biaka, and individuals.2n .1n
from the Maya. In the determination of the allele that
increases the quantitative trait values, we either fix the
same allele in the two subpopulations (denoted as the
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Table 4

Power Comparisons of the Three Tests (QSAT, TDTMK, and TDTVC), under Coalescent Models for Different Trait-Value
Distributions

TRAIT DISTRIBUTION, NO.
OF GENERATIONS SINCE

POPULATION DIVISION,
AND MODEL

POWER

P p .05 P p .01

QSAT

TDTMK TDTVC

QSAT

TDTMK TDTVC

n/3 2n/3 n n/3 2n/3 n n/3 2n/3 n n/3 2n/3 n

Normal:
500:

Dominant .99 .55 .81 .88 .48 .68 .76 .97 .35 .66 .80 .29 .53 .65
Additive .99 .55 .86 .95 .50 .70 .85 .99 .35 .75 .90 .25 .55 .74
Recessive .99 .47 .80 .87 .38 .63 .76 .97 .24 .62 .77 .20 .50 .65

1,500:
Dominant .99 .46 .72 .82 .34 .50 .56 .97 .22 .55 .69 .18 .36 .49
Additive .97 .46 .80 .90 .32 .57 .69 .94 .22 .61 .78 .16 .48 .59
Recessive .97 .40 .74 .82 .28 .50 .67 .95 .19 .54 .67 .15 .35 .55

4,500:
Dominant .97 .35 .66 .76 .23 .45 .53 .92 .16 .44 .59 .12 .35 .43
Additive .91 .34 .63 .74 .18 .40 .55 .81 .12 .38 .53 .08 .27 .38
Recessive .90 .24 .52 .64 .16 .34 .46 .82 .10 .30 .46 .07 .22 .33

Log-normal:
500:

Dominant .99 .53 .81 .88 .39 .67 .76 .97 .36 .67 .79 .24 .54 .67
Additive .99 .63 .89 .97 .47 .74 .86 .98 .40 .77 .91 .31 .61 .76
Recessive .99 .55 .84 .92 .43 .70 .80 .97 .34 .68 .81 .25 .53 .70

1,500:
Dominant .97 .48 .75 .83 .29 .54 .61 .94 .29 .58 .69 .16 .37 .49
Additive .97 .54 .83 .89 .35 .56 .65 .92 .32 .67 .78 .21 .44 .54
Recessive .97 .46 .76 .84 .29 .52 .60 .93 .26 .60 .72 .17 .40 .50

4,500:
Doninant .96 .38 .67 .79 .19 .42 .48 .88 .22 .48 .63 .09 .26 .38
Additive .89 .39 .65 .76 .19 .40 .52 .77 .22 .48 .60 .10 .30 .39
Recessive .87 .33 .57 .68 .17 .35 .45 .76 .16 .40 .52 .08 .24 .35

NOTE.—Sample size is for the QSAT and 50, 100, and 150 for the TDT tests.n p 150

“fixed” simulation design in the following discussion)
or randomly choose one of the alleles with probability
according to allele frequency in each subpopulation (de-
noted as the “random” simulation design in our follow-
ing discussion). The trait values are generated according
to the model in equation (6) above, with the only dif-
ference being that there are four population trait means,

, considered in the simulation, wherem , … , m m p1 4 i

, , and the eij are random variablesm a p b p m # R00 i i 0 i

from a normal distribution or random variables from a
log-normal distribution. In the type I error examination,
we set and . For power comparisons, form p 2 m p 000 0

each replication we systematically assign the trait locus
to be one of the markers. Therefore, for each replication
sample, we generate 130 samples with trait values de-
termined from different markers. We set ,m p m p 20 00

for Danes, for Chinese, forR p 1/4 R p 1/3 R p 11 2 3

Biaka, and for Maya. In both type I errorR p 1/24

assessments and power comparisons, we use 2,000 sim-
ulated samples to estimate the P value for each simulated
sample.

We choose individuals by two sampling schemes. In

the random sampling scheme, we select indi-n p 150
viduals from the overall population. In the selective sam-
pling scheme, we first randomly sample 500 individuals
from the overall population and then select individuals
in the top 10% and bottom 10% of the trait distribution,
resulting in a sample size of 100 individuals.

Other Association Tests Considered

In addition to the QSAT, we also consider three other
association tests in our simulations. The first test is the
test that ignores potential population stratification, and
this test statistic is denoted by T in the following dis-
cussion. The difference between this test and the QSAT
is that, in the T test, we always treat the sampled in-
dividuals as if they were from a homogeneous pop-
ulation.

Through use of either coalescent models or empirical
population genetics data, we also simulate a set of fam-
ily triads and apply two family-based association tests,
to determine whether there is an association between
the marker and the trait. The first test is the test pro-
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Table 5

Power Comparisons of the Three Tests (QSAT, TDTMK, and TDTVC) in Simulations based on Empirical Population Genetics Data,
under the Random Sampling Scheme

STATUS OF HIGH-RISK

ALLELE, TRAIT DISTRIBUTION,
AND MODEL

POWER

P p .05 P p .01

QSAT

TDTMK TDTVC

QSAT

TDTMK TDTVC

n/3 2n/3 n n/3 2n/3 n n/3 2n/3 n n/3 2n/3 n

Fixed:
Normal:

Dominant .98 .53 .77 .86 .31 .55 .64 .97 .31 .61 .77 .16 .37 .50
Additive .98 .44 .74 .87 .30 .54 .65 .96 .20 .55 .74 .13 .39 .50
Recessive .91 .32 .55 .65 .23 .43 .53 .85 .14 .35 .50 .10 .29 .37

Log-normal:
Dominant .97 .60 .78 .86 .32 .54 .64 .94 .43 .67 .79 .18 .38 .48
Additive .96 .61 .79 .90 .36 .57 .66 .90 .39 .64 .80 .21 .40 .53
Recessive .90 .40 .57 .66 .26 .47 .54 .83 .21 .42 .53 .13 .32 .43

Random:
Normal:

Dominant .90 .31 .43 .54 .20 .38 .48 .81 .17 .27 .39 .09 .22 .34
Additive .91 .48 .65 .80 .29 .53 .64 .82 .26 .44 .64 .16 .34 .50
Recessive .96 .60 .75 .84 .33 .55 .64 .93 .41 .61 .75 .19 .38 .48

Log-normal:
Dominant .86 .30 .47 .55 .19 .43 .48 .78 .20 .32 .42 .14 .28 .35
Additive .88 .46 .72 .80 .25 .50 .63 .80 .24 .54 .69 .15 .37 .48
Recessive .93 .58 .77 .85 .30 .55 .64 .90 .39 .64 .77 .17 .40 .50

NOTE.—Sample size is for the QSAT and 50, 100, and 150 for TDT tests.n p 150

posed by Monks and Kaplan (2000), and we denote
this test the “TDTMK.” Similar tests have been proposed
by Sun et al. (2000). The second test is based on vari-
ance-components models proposed by Fulker et al.
(1999), and we denote this test the “TDTVC.” In the
power comparisons, we simulate , , and n triosn/3 2n/3
in the family-based association design, where n is the
total number of individuals in the sample of unrelated
individuals. The reason that we cover a range of sample
sizes in the power comparisons is that the amount of
phenotyping and genotyping is different between the
two designs, for the same number of individuals; there-
fore, it is difficult to select a fixed sample size to make
the comparison fair. For each simulation model, we first
generate, as parents, , , and individuals in2n/3 4n/3 2n
the total population, and generate the children’s geno-
types according to their parents’ genotypes. For the se-
lective sampling scheme, we choose individuals accord-
ing to the children’s trait values, and the trait values
are generated according to the same model as above.
The P values of these two tests are evaluated by the
simulations.

Results

Population-Structure Inference

The first step in the QSAT procedure is to estimate
whether the number of components in the mixture model

is one, corresponding to one homogenous population,
or two, which implies that there are subpopulations in
the sample. When the number of components is esti-
mated to be two, we infer whether two individuals are
more likely to be from the same subpopulation or from
different subpopulations. In our simulations, when 500
independent biallelic markers are used for the coalescent
models, and when and markers are4 # 130 8 # 130
used for empirical population genetics data, the number
of components can be correctly estimated under all sit-
uations, and the relationship between two individuals
(whether they are from the same or from different sub-
populations) can be correctly inferred 197% of the time
(Zhang et al., in press).

Type I Error Rates

Table 1 summarizes type I error rates for the four
test statistics under the coalescent models. The re-
sults are based on 2,000 replications, with each rep-
lication consisting of randomly sampled in-n p 150
dividuals for all four tests ( trios for TDT-typen/3
tests). A total of 2,000 simulated data sets are used
for each sample in the estimation of the P values.
Therefore, for the two levels of statistical significance
considered, .05 and .01, the standard errors for the
type I error rate estimate are �.05 # .95/2,000 ≈

and , re-�3 �3�4.87 # 10 .01 # .99/2,000 ≈ 2.22 # 10
spectively. It is apparent from table 1 that the esti-
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Table 6

Power Comparisons of the Three Tests (QSAT, TDTMK, and TDTVC) in Simulations based on Empirical Population Genetics Data,
under the Selective Sampling Scheme

STATUS OF HIGH-RISK

ALLELE, TRAIT DISTRIBUTION,
AND MODEL

POWER

P p .05 P p .01

QSAT

TDTMK TDTVC

QSAT

TDTMK TDTVC

n/3 2n/3 n n/3 2n/3 n n/3 2n/3 n n/3 2n/3 n

Fixed:
Normal:

Dominant .97 .76 .91 .95 .48 .70 .78 .96 .60 .84 .90 .34 .55 .67
Additive .98 .76 .95 .98 .39 .66 .75 .97 .54 .88 .96 .30 .45 .65
Recessive .96 .55 .76 .85 .33 .50 .68 .93 .35 .61 .75 .29 .40 .52

Log-normal:
Dominant .98 .80 .93 .97 .49 .66 .80 .96 .63 .86 .94 .35 .50 .69
Additive .98 .79 .91 .95 .46 .55 .72 .94 .64 .86 .93 .38 .46 .58
Recessive .82 .49 .65 .78 .39 .51 .65 .73 .35 .56 .66 .29 .39 .50

Random:
Normal:

Dominant .92 .49 .65 .76 .38 .48 .65 .88 .32 .52 .65 .26 .39 .52
Additive .76 .40 .55 .67 .29 .39 .52 .66 .26 .43 .55 .19 .32 .44
Recessive .94 .41 .51 .65 .28 .37 .49 .91 .34 .45 .50 .24 .35 .40

Log-normal:
Dominant .94 .55 .68 .77 .43 .51 .57 .90 .40 .57 .69 .33 .40 .45
Additive .91 .50 .62 .71 .35 .41 .49 .82 .36 .50 .61 .29 .33 .38
Recessive .79 .46 .54 .66 .35 .40 .48 .66 .33 .49 .58 .27 .30 .37

NOTE.—Sample size is for the QSAT and 33, 67, and 100 for TDT tests.n p 100

mated type I error rates of the QSAT, TDTMK, and
TDTVC are not statistically significantly different from
the nominal levels. In contrast, the test statistic T,
which ignores potential population stratification, may
have a type I error rate that is substantially higher
than the nominal level in the presence of population
stratification.

The type I error results of simulations using empirical
population genetics data are summarized in tables 2 and
3, for random sampling and selective sampling, respec-
tively. The standard errors for the type I error
rate estimate are ∼ �3�.05 # .95/2,600 ≈ 4.27 # 10
and for the true error�3�.01 # .99/2,600 ≈ 1.95 # 10
rates of .05 and .01, respectively. It can be seen from
tables 2 and 3 that the type I error rates of the QSAT,
TDTMK, and TDTVC are not statistically significant from
the nominal levels, whereas the type I error rate for the
test statistic T is substantially higher than the nominal
level in the presence of population stratification.

Power Comparisons

The results of our power comparisons under coales-
cent models and random sampling are summarized in
table 4. The results are based on 2,000 replications, with
each replication consisting of individuals forn p 150
the QSAT and , , and n trios for TDT-type tests.n/3 2n/3
The QSAT is more powerful than TDT-type tests with
three different sample sizes ( , and n), and then/3 2n/3

TDTMK is more powerful than the TDTVC. We also ob-
serve that when the population divergence increases, the
power of the statistical tests decreases. In addition, the
trait distribution and the genetic models affect the power
of the tests.

Through use of empirical population genetics data and
random sampling, power comparisons are performed
under several conditions, including different schemes for
the assignment of alleles conferring high trait values,
different genetic models, different distributions of trait
values, and different sample sizes for TDT-type tests. We
use markers to infer the relationship8 # 130 p 1,040
between each pair of individuals. The results are sum-
marized in table 5. Similar to the simulation results based
on coalescent models, the QSAT has the highest power
and the TDTVC has the lowest power among the three
test statistics compared.

The results of power comparisons under empirical
population genetics data and selective sampling are sum-
marized in table 6. The pattern is the same as that under
the random sampling scheme. However, the difference
between the power of the QSAT and TDT-type tests is
not as great as that under the random sampling scheme.

Discussion

It is well known that one major limitation of the tra-
ditional association test based on population-based sam-
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ples is that it is susceptible to population stratification.
As a result, recent studies have produced many devel-
opments in family-based association designs that are ro-
bust to population stratification. However, the tradi-
tional association test is, in general, more powerful than
family-based association designs, and the sample collec-
tion is also easier and less expensive (Risch 2000). Re-
cently, several studies have appeared to use genomic
markers to control for population stratification in the
analysis of population-based data for qualitative traits
(Devlin and Roeder 1999; Pritchard et al. 2000b; Reich
and Goldstein 2001; Satten et al. 2001; Zhang et al., in
press). These studies have demonstrated that this general
approach is more efficient than family-based association
designs and that it is also robust to population strati-
fication. To extend this general approach to quantitative
traits, we have developed a statistical procedure, the
QSAT, to identify association between candidate mark-
ers and quantitative traits, using population-based data.
Our simulation results show that the QSAT has a correct
type I error rate in the presence of population structure
and that it is more powerful than family-based associ-
ation designs. The computer program for the QSAT will
be made available at the Hongyu Zhao Lab of Statistical
Genetics Web site.

Although we have compared the power of the QSAT
with that of the TDTMK and TDTVC, using three different
sample sizes, the comparisons are based on the as-
sumption that a set of independent markers are avail-
able for population-structure inferences. If there is only
one candidate locus, the QSAT may require substan-
tially greater genotyping efforts; however, given the low
prior probability of a specific gene producing a given
trait and the ever-decreasing genotyping cost, it may
be more cost-effective to perform a population-based
study.

In the present study, we have used a simple statistical
procedure to infer whether two individuals are likely to
be from the same subpopulation. In our simulations,
we have used �500 markers to make such inferences.
Because SNPs are less informative than microsatellite
markers, fewer markers may be needed for studies in-
volving microsatellite markers; for example, Pritchard
et al. (2000b) have suggested that 1100 microsatellite
loci should be used for inferring population structure.
In general, it is not easy to give a general statement
about the number of markers needed to identify pop-
ulation structure in a sample. On the basis of our sim-
ulation studies, we feel that 500–1,000 SNPs will allow
us to make relatively accurate inferences. If two sub-
populations are very similar, 11,000 SNPs may be re-
quired to distinguish them from one another; however,
in this case, spurious association would not pose a se-
vere problem, since the two subpopulations are suffi-
ciently similar to each other. In addition, with the rapid

progress in the identification of polymorphic markers
in the human genome and many ongoing population
genetics studies, some genetic markers may be found to
have better power for distinguishing subpopulations.
Progress in this area will likely lead to a set of markers
that are more informative for population-structure in-
ferences. In addition, genotyping cost will definitely
decrease.

In the case that multiallelic markers are used in a
genetic association study, here we outline one approach
to extending the QSAT method to a multiallelic trait
locus. Suppose that there are m alleles at theA , … , A1 m

trait locus; hence, there are genotypes AiAjm(m � 1)/2
. If we denote the genotypes(1 � i � j � m) m(m � 1)/2

as Gj, where , and denote thej p 1, 2, … , m(m � 1)/2
genotypic score of the ith individual and the jth geno-
type as

1 if the genotype of the ith individual is GjX p .ij {0 otherwise

Following the definitions of , Awi, and Dwi in the
— —
A , Di i

Methods section, we may similarly define and .
—
X Xij wij

We can then test the null hypothesis …H :b p p0 1

through use of the following regressionb p 0m(m�1)/2�1

model:

m(m�1)/2�1
—

y p a � (a X � b X ) � e .�i 0 j ij j wij ij
jp1

In the present study, we have introduced a similarity
indicator, , between the ith and the jth individualsWij

from the to characterize whether these two individ-tijk

uals are more likely to be from the same or from dif-
ferent subpopulations. An alternative approach to using
the tijk values is to directly apply these estimated prob-
abilities in the QSAT method; however, we have found
that this approach is less powerful than that using the
Wij values (data not shown).

The QSAT proposed in this article involves the pool-
ing of information from all subpopulations. If there are
two subpopulations, allele A1 increases trait values in
one subpopulation, and another allele, A2 increases trait
values in another subpopulation, the QSAT may lose
power. An alternative method is to directly test the hy-
pothesis andH :a p … p a p 0 b p … p b p0 1 k 1 k

under the model in equation (3). To apply this pro-0
cedure, we need to infer population structure through
use of genomic markers—for example, by means of the
procedure proposed by Pritchard et al. (2000b). There
are two potential problems with this alternative ap-
proach: (1) the estimation procedure proposed by
Pritchard et al. (2000b) tends to overestimate the num-
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ber of subpopulations in a sample and (2) the degrees
of freedom for the test statistic is 2k, where k is the
number of estimated subpopulations, and a test statistic
with many degrees of freedom may lose power. If the
same allele increases trait values in all subpopulations,
the QSAT is likely to be more powerful than this al-
ternative testing procedure. If different alleles increase
trait values in different subpopulations, the relative per-
formance of the statistical tests needs further inves-
tigation.
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Appendix A

The Expectation of and under the Model in Equationˆa bˆ
(3)

Suppose that there are k subpopulations, with in-ni

dividuals sampled from the ith subpopulation. Let
denote the total sample size, denote thekn p � n mip1 i i

phenotype mean in the ith subpopulation, and let andpi

denote the allele frequencies in the ith subpopulation.qi

Under the model in equation (3), the LS estimators of
a and b are

V C � C CD Ay AD Dy
â p ,2VV � CA D AD

VC � C CA Dy AD Ay
b̂ p , (A1)2VV � CA D AD

where

k ni — 2V p (A � A) ,��A ij
ip1 jp1

k ni — —C p (A � A)(y � y) ,��Ay ij ij
ip1 jp1

k ni — 2V p (D � D) ,��D ij
ip1 jp1

k ni — —C p (D � D)(y � y) ,��Dy ij ij
ip1 jp1

and

k ni — —
C p (A � A)(D � D) .��AD ij ij

ip1 jp1

From equation (2), we have

k k

ˆE(aFA , D ) p m � a a � b d ,� �ij ij a i (a)i i (a)i
ip1 ip1

k k

ˆE(bFA , D ) p m � a a � b d , (A2)� �ij ij b i (b)i i (b)i
ip1 ip1

where

V C � C CD Au AD Du
m p ,a 2VV � CA D AD

VC � C CA Du AD Au
m p ,b 2VV � CA D AD

k
— —

C p n (A � A)m ,�Am i i i
ip1

and

k
— —

C p n (D � D)m .�Dm i i i
ip1

In the equation, a(a)i, d(a)i, a(b)i, and d(b)i are functions of
Aij and Dij and satisfy the following conditions:

k k

a p d p 1 ,� �(a)i (b)i
ip1 ip1

k k

a p d p 0 . (A3)� �(b)i (a)i
ip1 ip1

If and , it fol-∗ ∗a p … p a p a b p … p b p b1 k 1 k

lows from equations (A1), (A2), and (A3) that
and . Fur-∗ ∗ˆˆE(aFA , D ) p m � a E(bFA , D ) p m � bij ij a ij ij b

thermore, under the null hypothesis H :a p … p0 1

and , andˆa p 0 b p … p b p 0 E(a) p E(m )k 1 k a

.ˆE(b) p E(m )b

Let . For large values of n and ni
2V p VV � CA D AD

,(i p 1, … , k)

1
E(m ) ≈ [E(V )E(C ) � E(C )E(C )]a D Au AD DmE(V)

and

1
E(m ) ≈ [E(V )E(C ) � E(C )E(C )] .b A Du AD AmE(V)

Through some calculations, we have
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k k k 212 2E(V ) p n (p � q ) � 2n p q � U n (p � q )I ,� � �A i i i i i i i i i{ }nip1 ip1 ip1

k k k
2n � 1 1 2 2E(V ) p 2n p q � U 2n p q � 4n p q I ,� (� ) �D i i i i i i i i in nip1 ip1 ip1

k k k1
E(C ) p � U n (p � q ) 7 2n p q � 2n (p � q )p qI ,� � �AD i i i i i i i i i i in ip1 ip1 ip1

k k
— — —E(C ) p 2n (p � p)m p 2m (p � p)(m � m) ,� �Am i i i i i i

ip1 ip1

and

k
— —2 2 —E(C ) p 2n [p � p � (p � p )](m � m) ,�Dm i i i i

ip1

where and . In the case of— —1 1k 2 k 2p p S n p p S n pip1 i ip1 i in n

two subpopulations—that is, when —and with ank p 2
equal number of individuals from each subpopula-
tion—that is, when —we haven p n1 2

p � p � 2p p1 2 1 2E(m ) p (p � p )(m � m ) ,a 1 2 1 2
Q

1 � (p � p )1 23E(m ) p (p � p ) (m � m ) , (A4)b 1 2 1 2
Q

where .2 2Q p 2(p q � p q )[(p q � p q ) � (p � p ) ]1 1 2 2 1 1 2 2 1 2

From equation (A4), we can see that if the phenotypic
means and allele frequencies vary between subpopula-
tions—that is, if and —thenm ( m p ( p E(m ) (1 2 1 2 a

. Furthermore, if , then .0 p � p ( 1 E(m ) ( 01 2 b

Appendix B

The Expectations of , and under the Modelˆ ˆa , b , a bˆ ˆw w b b

in Equation (4)

Under the model in equation (4), the LS estimates of
and areˆâ bw w

V C � C CD A y A D D yw w w w wâ pw 2V V � CA D A Dw w w w

and

V C � C CA D y A D A yw w w w wb̂ p ,w 2V V � CA D A Dw w w w

where

k ni

2V p A ,��A wijw
ip1 jp1

k ni

—C p A (y � y) ,��A y wij ijw
ip1 ip1

k ni

2V p D ,��D wijw
ip1 jp1

k ni

—C p D (y � y) ,��D y wij ijw
ip1 jp1

and

k ni

C p A D .��A D wij wijw w
ip1 jp1

Note that . Under the model inn ni i� A p � D p 0jp1 wij jp1 wij

equation (2), we have

k n ni i

2E(C ) p a A � b A D( )� � �A y i wij i wij wijw
ip1 jp1 jp1

and

k n ni i

2E(C ) p a A D � b D .( )� � �D y i wij wij i wijw
ip1 jp1 jp1

After some algebraic calculations, we obtain

k k

ˆE(a FA , D ) p a a � b d� �w ij ij i (wa)i i (wa)i
ip1 ip1

and

k k

ˆE(b FA , D ) p a a � b d ,� �w ij ij i (wb)i i (wb)i
ip1 ip1

where a(a)i, d(a)i, a(b)i, and d(b)i are functions of Aij and Dij

and satisfy

k k

a p d p 1� �(wa)i (wb)i
ip1 ip1

and

k k

a p d p 0 .� �(wb)i (wa)i
ip1 ip1

If and , it fol-∗ ∗a p … p a p a b p … p b p b1 k 1 k

lows that and . In∗ ∗ˆˆE(aFA , D ) p a E(b FA , D ) p bij ij ij ij ij

this case, and are both unbiased estimators of theˆâ bw w

additive and dominance genetic values a* and b*, re-
spectively. Even if the additive and dominance genetic
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values vary among subpopulations, we still have
under the null hypothesisˆˆE(a ) p E(b ) p 0 H .w w 0

Under the model in equation (4), the LS estimates of
and are given byˆâ bb b

V C � C CD A y A D D yb b b b bâ pb 2VV � CA D A Db b b b

and

V C � C CA D y A D A yb b b b bb̂ p ,b 2VV � CA D A Db b b b

where

k
— — 2V p n (A � A) ,�A i ib

ip1

k
— — — —C p n (A � A)(y � y) ,�A y i i ib

ip1

k
— — 2V p n (D � D) ,�D i ib

ip1

k
— — — —C p n (D � D)(y � y) ,�D y i i ib

ip1

and

k
— — — —

C p n (A � A)(D � D) .�A D i i ib b
ip1

It follows from the model in equation (2) that, after some
algebraic calculations,

k k

ˆE(a FA , D ) p m � a a � b d� �b ij ij ba i (ba)i i (ba)i
ip1 ip1

and

k k

ˆE(b FA , D ) p m � a a � b d ,� �b ij ij bb i (bb)i i (bb)i
ip1 ip1

where

V C � C CD A m A D D mb b b b bm p ,ba 2V V � CD A A Db b b b

V C � C CA D m A D A mb b b b bm p ,bb 2V V � CD A A Db b b b

k
— —

C p n (A � A)m ,�A m i i ib
ip1

and

k
— —

C p n (D � D)m .�Dm i i i
ip1

The variables a(ba)i, d(ba)i, a(bb)i, and d(bb)i are functions of
Aij and Dij and satisfy

k k

a p d p 1� �(ba)i (bb)i
ip1 ip1

and

k k

a p d p 0 .� �(bb)i (ba)i
ip1 ip1

If and , it fol-∗ ∗a p … p a p a b p … p b p b1 k 1 k

lows that and∗ ˆˆE(a FA , D ) p m � a E(b FA , D ) pb ij ij ba b ij ij

. Furthermore, under the null hypothesis∗m � b a pbb 1

and , andˆ… p a p 0 b p … p b p 0 E(a) p E(m )k 1 k a

.ˆE(b) p E(m )b

Let . For large values of n and2V p VV � C nb A D A D ib b b b

,(i p 1, … , k)

1
E(m ) ≈ [E(V )E(C ) � E(C )E(C )]ba D Au AD DmE(V)

and

1
E(m ) ≈ [E(V )E(C ) � E(C )E(C )] .bb A Du AD AmE(V)

Therefore, we have

k 2ni —2 2E(V ) p 2p q � n (p � q ) � p q � n(2p � 1) ,�A i i i i i i ib [ ]nip1

2
k kn � n 1i 2 2E(V ) p 2 p q (1 � 2p q ) � 2n p q � 2n p q ,� �D i i i i i i i i i ib [ ] [ ]n nip1 ip1

k k k1 2
E(C ) p 2 n 1 � � 1 (p � q )p q � n (p � q ) 7 n p q ,� ( ) � �A D i i i i i i i i i i ib b [ ]n nip1 ip1 ip1

k
—E(C ) p 2m (p � p)m ,�A m i i ib

ip1

and

k
— —2 2E(C ) p 2n [p � p � (p � p )]m .�Dm i i i i

ip1

For and , we havek p 2 n p n1 2

(p q � p q )(p � p � 2p p )1 1 2 2 1 2 1 2E(m ) p (p � p )(m � m ) ,ba 1 2 1 2
�

1 � (p � p )1 23E(m ) p (p � p ) (m � m ) ,bb 1 2 1 2
�

(A5)
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where

2 2 2 2 2� p 2[(p � p ) [2p q � 2p q1 2 1 1 2 2

2�n(p � p ) (p q � p q )]1 2 1 1 2 2

2 3 3 3 3 2� [p q � p q � 2p q p q (p � p ) ] .1 1 2 2 1 1 2 2 1 2n

From equation (A5), we can see that if the phenotypic
means and allele frequencies vary between the two sub-
populations—that is, if and —thenm ( m p ( p1 2 1 2

. Furthermore, if , then E(mbb) (E(m ) ( 0 p � p ( 1ba 1 2

0.

Electronic-Database Information

The URLs for data in this article are as follows:

ALFRED, http://alfred.med.yale.edu/alfred/index.asp (for em-
pirical population genetics data)

Hongyu Zhao Lab of Statistical Genetics, http://bioinformatics
.med.yale.edu/ (for QSAT computer program)

References

Abecasis GR, Cardon LR, Cookson OC (2000) A general test
of association for quantitative traits in nuclear families. Am
J Hum Genet 66:279–292

Bacanu SA, Devlin B, Roeder K (2000) The power of genomic
control. Am J Hum Genet 66:1933–1944

Celeux G, Govaert G (1995) Gaussian parsimonious clustering
model. Pattern Recognition 28:781–793

Devlin B, Roeder K (1999) Genomic control for association
studies. Biometrics 55:997–1004

Fulker DW, Cherny SS, Sham PC, Hewitt JK (1999) Combined
linkage and association sib-pair analysis for quantitative
traits. Am J Hum Genet 64:259–267

Goldstein DB, Linares AR, Cavalli-Sforza LL, Feldman NW
(1995) Genetic absolute dating based on microsatellites and
the origin of modern humans. Proc Natl Acad Sci USA 92:
6723–6727
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